Programme de colle : du 30 mars au 5 avril

Voici les compétences à **assimiler**. Ne cochez pas avant d'être sûr d'être à l'aise avec la notion. N'hésitez pas à en parler à vos camarades (il est très bénéfique d'échanger sur le cours, de s'expliquer mutuellement les notions), ou à préparer des questions à poser en classe, ou à me demander un rendez-vous pour me poser vos questions ou me faire part de vos préoccupations.

1 Séries

dans E.

Savoir que ce qu'on appelle "la série de terme général u_n " est notée $\sum u_n$ et que cela est la SUITE des SOMMES PAR-
$\text{TIELLES}: \sum u_n = \left(\sum_{n=0}^N u_n\right)_{N\geq 0} \text{ (ou si vous préférez, } \left(\sum_{k=0}^n u_k\right)_{n\geq 0}, \text{ les variables sont muettes). Définition analogue dans } \left(\sum_{n=0}^N u_n\right)_{N\geq 0} \left(\sum_{n=0}^N u_n\right)_{N\geq 0} \left(\sum_{n=0}^N u_n\right)_{N\geq 0}, \text{ les variables sont muettes).}$
le cas où (u_n) n'est défini qu'à partir d'un rang n_0 .
Montrer que $\sum_{n>n_0} u_n$ et $\sum_{n>0} u_n$ ont même nature. (Question de cours).
Définition du reste d'indice n d'une série, et écriture sous la forme d'une somme (Question de cours, démonstration exigible).
Toute combinaison linéaire de séries convergentes est convergente (Question de cours, démonstration exigible).
Si $\sum u_n$ converge, alors $u_n \underset{n \to +\infty}{\to} 0$, et la réciproque est fausse (vocabulaire : série grossièrement divergente). (Question de
cours, démonstration exigible).
Si $\sum u_n $ converge, alors $\sum u_n$ converge, et la réciproque est fausse (pour la réciproque fausse : on admettra que $\sum (-1)^n/n$
converge). (Question de cours, démonstration exigible).
Convergence et sommes des séries $\sum q^n$, $\sum nq^{n-1}$ et $\sum n(n-1)q^{n-2}$. (Démonstration NON exigible).
Notion de série à termes positifs, une série à terme positifs converge si et seulement si elle est majorée (c'est-à-dire s'il existe
un majorant des sommes partielles). (Question de cours, démonstration exigible).
Si pour tout $n, 0 \le u_n \le v_n$, alors si $\sum v_n$ converge, $\sum u_n$ converge aussi (et par contraposée si $\sum u_n$ diverge, $\sum v_n$
diverge aussi). Encore vrai en supposant que $0 \le u_n \le v_n$ à partir d'un certain rang.
Si $u_n = o(v_n)$, que $\sum v_n$ est à termes positifs et converge, alors $\sum u_n$ converge aussi. (Question de cours : donner un
contre-exemple de ce théorème si on ne suppose plus que $v_n \ge 0$.
Si $u_n \sim v_n$, que $\sum v_n$ est à termes positifs et converge, alors $\sum u_n$ converge aussi (qui peut être prouvé comme conséquence
du point précédent)
Connaître la nature de $\sum \frac{1}{n^{\alpha}}$ en fonction de $\alpha > 0$. (Démonstration NON exigible).
Convergence et somme de séries exponentielles. (Démonstration NON exigible).
Séries télescopiques : $\sum u_{n+1} - u_n$ et (u_n) ont même nature. (Question de cours, démonstration exigible).
2. Egnagos voctorials, dimension finis

Séries télescopiques : $\sum u_{n+1} - u_n$ et (u_n) ont même nature. (Question de cours, démonstration exigible).
2 Espaces vectoriels, dimension finie
F et G sont deux s.e.v. d'un e.v. E .
2.1 Somme de sous-espaces vectoriels dans le cas général
Définition de $F + G$.
Définition de " F et G sont en somme directe", et caractérisation avec l'intersection réduite à 0_E . (Question de cours, démonstration exigible).
Définition de " F et G sont supplémentaires dans E " : $E=F\oplus G$. Comprendre que cela revient à montrer, pour tout $u\in E$,
qu'il existe $(f,g) \in F \times G$ tels que $u = f + g$ $(E = F + G)$, et que de plus ce couple (f,g) est unique $(F \text{ et } G \text{ sont en somme})$
directe). Bien sûr on peut aussi penser à utiliser la caractérisation de la somme directe avec l'intersection.
Généralisation, avec la définition de $F_1 + \cdots + F_p$, de " F_1, \dots, F_p sont en somme directe", de " F_1, \dots, F_p sont supplémentaires

2.2 Dimension finie

\square Définition de " E est de dimension finie".
\square Théorème de la base incomplète, version faible : si E est de dimension finie,
— De toute famille génératrice de E on peut extraire une base de E ;
— Toute famille libre de E peut être complétée en base de E . (Aussi appelé théorème de la base extraite.)
(En conséquence, E admet au moins une base)
\square Si $\mathcal L$ est une famille libre et $\mathcal G$ est une famille génératrice de E , alors $\mathcal L$ a un nombre de vecteurs inférieur ou égal à celui de
${\cal G}.$
\square Si E est de dimension finie, toute base de E a le même nombre d'éléments, qu'on note $\dim(E)$.
\square Si E est de dimension n , toute famille libre de E a au plus n éléments, toute famille génératrice de E a au moins n éléments
et cas d'égalités : toute famille libre de n éléments est une base, toute famille génératrice de n éléments est une base
(Question de cours, démonstration d'un des deux cas d'égalités exigible).
\square Si E est de dimension n , tout s.e.v. F de E est de dimension finie et majorée par n . De plus, si $\dim(F)=E$, alors $F=E$
(Question de cours, démonstration du cas d'égalité exigible).
□ Tout sous-espace vectoriel d'un espace vectoriel de dimension finie admet (au moins) un supplémentaire (Question de cours
démonstration exigible).
\square En dimension finie, formule de Grassmann : $\dim(F+G)=\dots$
\Box En dimension finie, deux autres caractérisations de la somme directe :
— La concaténation d'une base de F et d'une base de G est une base de $F + G$;
$-\dim(F+G) = \dim(F) + \dim(G).$
\square En dimension finie, trois autres caractérisations de $E=F\oplus G$:
— la concaténation d'une base de F et d'une base de G est une base de E ;
$\dim(F) + \dim(G) = \dim(E) \text{ et } F \cap G = \{0_E\};$
$-\operatorname{dim}(F) + \operatorname{dim}(G) = \operatorname{dim}(E) \text{ et } F + G = E.$

Note pour les colleurs : il n'y a pas encore eu beaucoup d'exercices sur les espaces vectoriels de dimension finie, commencer par des exercices concrets avec des espaces vectoriels "simples".